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Abstract—This Research Full paper focuses on the challenges
in artificial intelligence, machine learning, and data science
education, which often deal with extensive prerequisites limiting
student access. Early access to coursework in these areas is
critical to enabling earlier undergraduate research engagement
and, hence, enhancing academic retention. We analyze the course
structures and prerequisites of artificial intelligence, machine
learning, and data science courses, referred to as ‘artificial
intelligence” courses here on, offered in computing departments
of 50 Research-1 institutions in the United States and conduct
a systematic review. Our analysis specifically targets Research-1
institutions, recognized for their “Very High Research Activity,”
to investigate the process and the associated timeline that pre-
pares students for research in artificial intelligence during their
undergraduate educational journey.

Specifically, we are interested in students’ earliest exposure to
these courses and institutions’ common and different approaches
to structuring prerequisites. Thus, we analyze course syllabi
from 50 Research-1 universities, focusing on the structure and
prerequisites of artificial intelligence courses. We categorized
courses based on their course descriptions while collecting
additional information, such as the frequency of offerings and
course level (first-year, second-year, etc.). To systematically ana-
lyze the prerequisites, we employed open coding to develop a
unified codebook to identify immediate prerequisites. We use
the prerequisite information to build a prerequisite chain to
determine the earliest exposure levels for these courses. Finally,
we conducted a clustering analysis on courses and institutions
to understand common and differing approaches in curriculum
design.

Results reveal that public Research-1 institutions offer ad-
vanced courses with greater exposure and fewer prerequisites
than private institutions, both of which provide easily accessible
introductory courses. Data science requires less initial exposure,
while machine learning requires more prerequisites. Standard
requirements for the artificial intelligence course include algo-
rithmic foundations and CS1, with the machine learning course
requiring more mathematics preparation.

Overall, this study recognizes the considerable diversity in
the curricular frameworks in Research-1 institutions, offering a
detailed perspective on the complexities and potential pathways
for standardizing education in artificial intelligence. This study
encourages institutions to revise their curricula to broaden
educational access to artificial intelligence, aiming to increase
undergraduate participation in artificial intelligence research.
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I. INTRODUCTION

There has been increased interest in areas related to Ar-
tificial Intelligence (AI), Machine Learning (ML), and Data
Science (DS), (referred to as Al courses here on) as well as
applications of these areas in various fields [1]-[4]]. Integrat-
ing such disciplines in the educational framework is highly

demanded in any industry today [5]] as it prepares students to
drive innovation and address complex challenges in a variety
of sectors [6], [[7]. However, Al fields face challenges in
ensuring diversity [8]], [9]. Studying and teaching Al have been
reported by both students and instructors as challenging [6],
[10], [11] and Computer Science (CS) educators often hesitate
to teach Al subjects to non-major students due to their com-
plexity [[12]]. Learning these topics often requires a grasp of a
range of mathematical prerequisite skills like calculus, linear
algebra, and probability, as well as programming skills [13]-
[16]. Such requirements can potentially delay students from
engaging in these fields at early stages.

Our study analyzes R1 (Research-1): Doctoral Universities
in the United States (U.S.) with “Very High Research Activity”
from the Carnegie classiﬁcatiorﬂ We specifically focus on
R1 institution since we want to investigate the process and
the associated timeline that prepares students for Al research
after taking relevant courses. Our study aims to compare and
contrast the various curriculum designs across institutions to
evaluate student accessibility to Al courses and understand the
effects of a light prerequisite structure on students’ readiness
for Al research.

We seek to answer the following three research questions:

« RQ1. What is the earliest exposure of students to the Al
curriculum?

o RQ2. What common approaches are institutions using to
structure prerequisites for Al courses in R1 computing
departments in the U.S.?

+ RQ3. What different approaches are institutions using to
structure prerequisites for Al courses in R1 computing
departments in the U.S.?

This study intends to guide educational institutions in creat-
ing learning pathways that are rigorous yet flexible and align
with the evolving demands of Al to balance the need for
foundational knowledge with accessible research entry points
into these fields.

II. RELATED WORK

Previous studies showed the importance and impact of
Al courses on a diverse group of students. Ng et al. [[17]]
emphasized the importance of Al in education, noting a shift
from traditional university-level CS to inclusive methods for
K-12 and non-technical learners. In addition, AI education
can be taught to non-technical majors as well. Menkhoff
and Lydia Teo [18]] conducted a case study with its chatbot
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workshop to non-technical undergraduate students to teach
basic skills in the freshman Al course. Moreover, de Freitas
and Weingart [12] demonstrated that Al concepts can be
effectively taught to non-technical students with a curriculum
specifically designed for first-year students. These findings
confirm the versatility and applicability of Al education across
diverse technical levels of students.

The CS community is interested in examining the role of
prerequisites in education. Krause-Levy et al . [19] examined
instructors’ views on computing education prerequisites, re-
vealing the complexity of prerequisite course implementation
and the challenges instructors face when aligning course
content with student preparation and curriculum requirements.
Another study by Krause-Levy et al. [20] analyzed demo-
graphic factors affecting students’ readiness for an Advanced
DS course. The study revealed disparities in prerequisite pro-
ficiency among different student groups and emphasized the
importance of addressing diverse educational backgrounds in
the field. Krause-Levy et al. [21]] found significant correlations
between students’ success in prerequisite courses and their
performance in the advanced course, suggesting that perfor-
mance in prerequisites strongly predicts success in subsequent
advanced computing courses.

There are diverse approaches in which prerequisites are
integrated into Al courses. Li and Liu [22] emphasize the
importance of core theoretical courses like “Matrix Computa-
tion” and “Optimization” as prerequisites in Al. Another study
found that incorporating just-in-time prerequisite reviews, con-
sisting of targeted questions and instructional videos before
each lecture, effectively addressed knowledge gaps in ML
courses [13]].

Previous studies demonstrate that A/ can be taught even
without extensive technical prerequisites. Barretto et al. [§]]
recommends enhancing Al and ML participation by adding
courses on their societal and cultural impacts, targeting un-
derrepresented students interested in these broader topics over
technical aspects. Moreover, in a month-long course teaching
ML and Natural Language Processing (NLP) to high school
students who were taught coding in the course itself, students
enhanced their understanding of AI and underscored the im-
portance of foundational programming skills in Al education
[23]. Allen et al . [11] advocates for a combination of
theoretical and practical teaching methods, tailored support to
address students’ mathematics anxiety and confidence issues,
and adaptive teaching strategies for complex Al concepts to
broaden participation.

With all the recent advancements, interest in conducting Al
research has risen dramatically, particularly with undergradu-
ates [24]. However, oftentimes, Al research is not available to
students without related experience in coursework. Access to
Al courses at an early stage empowers students to engage in
undergraduate research earlier. This has important implications
for student retention, as Bhattacharyya et al . [25] found that
engaging in undergraduate research increased student retention
rate and graduation rates.

The previous studies primarily focused on demographic
analyses, instructor perspectives, and the relationship between
prerequisite courses and student performance in specific com-

puting courses. Our research is unique in that it systemati-
cally reviews the curriculum approaches of Al courses across
R1 institutions, analyzing how prerequisites influence course
accessibility and Al research preparation eventually.

III. METHODOLOGY
A. Data Collection

We randomly sampled 50 R1 universities. Our sample
included 37 public universities and 13 private universities.
To be included in our sample, the institution must have a
computing department advertised on their institution’s website.
Institutions must also have at least one Al, ML, or DS course
offered by their computing department. We excluded and
resampled two universities that were originally in our sample
but did not have a computing department and did not have any
undergraduate courses offered. The geographic distribution
of the sampled universities across the U.S. is illustrated in
Figure [}

We then collected, for each institution, the list of under-
graduate Al courses offered by their computing department.
To define Al courses, we first identified relevant courses
from each institution’s academic calendar. The criteria for
classifying a course as Al, ML, or DS were based on the 2023
offering guidelines, examining the course syllabi. This process
helped ensure that the courses selected were representative
of the respective subjects. We considered whether any edge
cases emerged in this categorization, but such instances were
not prevalent. In terms of inclusion and exclusion, we ruled
out special topic courses and those that were not recently
offered, to maintain relevancy and accuracy. For each relevant
undergraduate course, we collected the course type (Al, ML,
or DS), course name, level, immediate course prerequisites,
and offering frequency. “Introductory”, “Intermediate”, “Ad-
vanced”, and “Cross-listed” (courses open to both undergrad-
vate and graduate students), based on each university’s course

TABLE I
BREAKDOWN OF UNIVERSITY TYPE

University Type = Number
Public 37
Private 13

Count

Fig. 1. Sampled university distribution across the U.S.



TABLE II
DISTRIBUTION OF COURSE LEVELS FOR AI, ML, AND DS.

Course Type  Number of Average Min Max Mode Mode
Courses Course Level Course Level Course Level Course Level Frequency
Al 55 2.96 1 4 3 Once a year
ML 54 3.02 2 4 3 Once a year
DS 40 2.33 1 4 3 More than once a year
numbering scheme. The offering frequency was categorized TABLE IIT
into “More than once a year”, “Once a year”, and “Less CATEGORIZATION OF CODE NAMES.
than once a year”, aligning with the universities’ academic
schedules. The definitions of “Introductory”, “Intermediate”, Category Code Names
and Ad.Val‘lCCd were ?’S.tathhe.d based on cour.se cqntent Mathematics  Discrete Mathematics, Linear Algebra, Multi-
complexity and prerequisite requirements, as outlined in the variable Calculus, Probability, Statistics, Single-
respective university catalogs. variable Calculus
Out of our sampled universities, 3 universities had less than Computing Algorithmic Foundations, Architecture and Organi-
2 Al courses, 36 offered between 2 and 3 Al courses, and zation, Artificial Intelligence, CS1, CS2, Data Man-
11 universities offered more than 3 Al courses, as seen in agement, Data Science, Machine Learning, Founda-
Fi tions of Programming Languages, Software Engi-
1gure E} . . neering
Further, as shown in Table [[I} our sampled courses included
55 Al, 54 ML, and 40 DS courses. The course level from Others “Society, Ethics and Professionalism”, Signal Pro-

“Introductory” to “Cross-listed” is coded as levels 1 to 4.
Both AI and DS had a minimum course level of introductory,
whereas ML had a minimum course level of intermediate. All
three subjects were most often offered at the advanced level.
Further, AI and ML courses were most often offered once a
year, whereas DS courses were most often offered more than
once a year.

B. Coding of Prerequisites

To give structure to the diverse set of prerequisites provided
by each university, we first gathered information on the im-
mediate prerequisites of each course. Three researchers, also
authors of this study, independently conducted open coding of
each course, resulting in three sets of codes. Next, the three
sets were merged into a single codebook. During this phase,
we removed duplicates and aligned our codes with courses
provided in ACM’s CS Curricula 2023 (Version Gammaﬂ
The course names (codes) in our final codebook is shown in
Table

Two researchers then coded the prerequisites for each course
using the final codebook. There was a 10% overlap in the
coding process to check reliability. After this phase, the coders
discussed with a third mediator to iterate upon the overlapping
codes. During this part, any discrepancies were discussed, and
additional modifications were made to the coding, particularly
in instances where courses spanned multiple topics. This
iterative process resulted in achieving a high level of inter-
rater reliability, as evidenced by a Cohen’s kappa score of
0.95, high substantial agreement [26].

C. First Exposure Level

To understand the earliest availability stage of Alcourses
(RQI), we place a heavy emphasis on determining the earliest

Zhttps://csed.acm.org/wp-content/uploads/2023/09/Version-Gamma.pdf

cessing

entry point at which a student can engage with these courses.
Thus, we analyzed how the first exposure levels and prereq-
uisite chains differed between course types. We detailed the
differences in the distribution of first exposure levels between
AI courses by plotting a histogram for each course type.

D. Common Prerequisite Approach

To understand the common prerequisite approaches (RQ2),
we developed a Sankey graph plotting each course’s prerequi-
site chain. We chose this graph to visualize which prerequisites
were the most foundational for each of the Al courses, as well
as which prerequisites were most often required. To that end,
for each of the 50 institutions in our sample, we construct
a prerequisite graph: a directed graph where the nodes are
courses needed to take one of the Al courses, and the edges
denote direct prerequisite relation. This approach allowed us
to trace back each course to its direct and indirect prerequisites
and can thus help determine the first exposure level: the depth
of each course within the prerequisite hierarchy. For example,
a course with several layers of prerequisites would indicate a
higher first exposure level compared to a course that is directly
connected to the initial course.

E. Clustering Analysis

To reveal the characteristics of different institutions and their
corresponding courses (RQ3), we use a clustering method.
Specifically, we analyzed the data using k-means clustering to
create clusters at the course and institution levels. Our features
for the course level analysis were using five categories: Type of
course, course level, course frequency, prerequisite statistics,
and prerequisite courses using the aforementioned codebook.
These groups of features were necessary to define how Al is
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Fig. 2. Number of AI, ML, and DS courses per university.

currently being offered in R1 institutions because they capture
statistics related to access to courses. By taking into account
course levels and prerequisites, we could determine the first
term where students may be able to enroll in Al courses. Fur-
ther, the course frequency metric offered insights into barriers
to access to classes even after prerequisites are completed.
Through our analysis, we hope to expose the roadblocks
students may face to access these courses, and therefore,
potential roadblocks in their pursuit of research opportunities.
Our university-level features included: course level, frequency,
immediate prerequisite courses, total prerequisites, and first
exposure level, as calculated by the averages over the relevant
Al courses at the university.

For k-means clustering, we used one-hot encoding to repre-
sent categorical features. Our k-values were chosen based on
the highest silhouette score between 2 and y/n/2, a common
heuristic to find an optimal k, where n is the number of data
points. This resulted in 8 clusters for the course level and 4
clusters for the university level clustering.

IV. RESULTS
A. Distribution of Exposure Level: RQ1

We compared the first exposure levels of different course
types as shown in Figure [3] Observations from the figure
suggest that DS courses tend to be more introductory, as
indicated by lower exposure levels. In comparison, Al and
ML courses show higher and more advanced exposure levels,
with ML courses reaching the highest level of five, suggesting
more advanced content than Al courses, which peak at four.

B. Relationship Between Prerequisites: RQ2

As shown in Figure [ all prerequisite chains were based
on one of three-course types: CS1 for more coding-related
courses and Linear Algebra or Single-variable calculus for
more mathematics-related courses. DS courses generally re-
quire minimal prerequisites, with only a handful of uni-
versities requiring various prerequisites like an Algorithmic
Foundations course or a CS2 course. Meanwhile, Al courses
generally require a strong programming background as seen

by the prerequisite chains starting from CS1. ML courses
require even more preparation, as they often possess long
prerequisite chains on both the programming and mathematics
sides, originating from CS1 and Single-variable Calculus,
respectively.

C. Course Level Clustering: RQ3

To understand the different approaches that institutions
use to structure Al prerequisites, we study the clustering of
different courses offered by the sampled institutions. Figure [3]
is a heatmap of the course clusters. On the x-axis, we have
our selected features as described previously, and on the y-axis,
we have 8§ clusters. The color gradient indicates how prevalent
each feature was to the cluster. A lighter shade, such as yellow,
indicates that including that feature was more prevalent in that
cluster than it was in others. For example, the first cluster has
a yellow color for Al, which means that its cluster is defined
by having Al courses. A darker shade, such as navy blue,
indicates that the lack of a feature helped define that cluster.
Notably, the dark blue in Cluster 6 for the "Once a Year”
feature indicates that the cluster mostly contains courses that
were not offered once a year. Lastly, the medium-tone colors,
such as teal, indicate that a feature was not as relevant to that
cluster as it was to other clusters.

Using these definitions, we find that features including
course type, course level, and some of the prerequisite features
help define our clusters as seen by the light yellows and dark
blues in those regions. However, features such as exposure
level and number of prerequisites do not define our clusters as
much, except for cluster 4, where relatively low prerequisite
levels are relevant. The 8 clusters are each defined by the
following features:

1) Al courses, advanced level, offered once a year, common
prerequisites include Algorithmic Foundations and CS1
(N=45).

2) ML courses, advanced level, offered once a year, low
number of immediate prerequisites, and common pre-
requisites include CS1 and CS2 (N=31).

3) ML Courses, advanced level, offered once a year, high
level of total and immediate prerequisite courses, and
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common prerequisites include CS1, CS2, Linear Alge-
bra, Probability, Statistics, and Single Variable Calculus
(N=23).

4) DS courses at an introductory level (N=17).

5) Intermediate level, offered more than once a year, low
first exposure levels, low total and immediate numbers
of prerequisites (N=15).

6) Advanced level, offered more than once a year, high
total number of prerequisites, and common prerequisites
include Algorithmic Foundations, Statistics, Foundations
of Programming Languages, and Single Variable Calcu-
lus (N=7).

7) ML courses, advanced level, high first exposure level,
low number of immediate prerequisites, and com-
mon prerequisites include Linear Algebra and Machine
Learning (N=6).

8) DS courses, advanced level, offered once a year, and
common prerequisites include Algorithmic Foundations,
CS1, CS2, and Data Management (N=5).

D. University Level Clustering: RQ3

We also looked at the institution level, and the clusters were
based on the following features: public vs. private institutions,

course levels, exposure levels, prerequisite numbers, and fre-
quency. The four centroids informed our clustering analysis.
Figure [] is a heatmap of the university clusters, with the same
coloring scheme as the course clusters.

The clusters have the following characteristics:

1) Public institutions, advanced course levels, high first
exposures (N=25).

2) Public institutions, frequently offered courses and lower
number of prerequisites (N=11).

3) Private institutions, a high number of average prerequi-
sites (N=10).

4) Public and private institutions, introductory course lev-
els, infrequent offerings, minimal total prerequisites, low
first exposure (N=4).

V. DISCUSSION

RQ1. What is the earliest exposure of students to the Al
curriculum?

Nearly a third of universities offer DS courses with no
prerequisites, allowing students to engage with DS from their
first term. This contrasts with Al and ML courses, typically
requiring two to three semesters of prerequisites. The results
suggest that DS is considered a fundamental subject in early
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university education. While Al and ML are positioned as
advanced subjects, accessible after building a foundational
knowledge base in the first year.

RQ2. What common approaches are institutions using to
structure prerequisites for A/ courses in R1 computing depart-
ments in the U.S.?

Al courses typically require a strong programming back-
ground, often starting with CS1 courses as prerequisites. This
indicates a focus on coding skills as essential for Al courses.

ML courses, on the other hand, demand extensive preparation
in both programming and mathematics. Their long prerequisite
chains usually begin with CS1 and Single-variable Calculus,
reflecting the need for a deeper understanding of both fields.
Compared to Al and ML, DS courses are more accessible,
generally requiring fewer prerequisites and thus positioned
as a more introductory subject in the curriculum. However,
Figure [] shows that a keen student should be able to satisfy
the prerequisites to take an ML course in the latter half of
year 2 of study if the university’s curriculum allows it.

RQ3. What different approaches are institutions using to
structure prerequisites for A/ courses in R1 computing depart-
ments in the U.S.?

Introductory Al courses typically require fewer prerequi-
sites compared to ML courses, indicating easier access for
beginners. Some ML courses require DS as a prerequisite,
suggesting an institutional focus on integrating DS skills in
ML education. Private universities offer these courses more
frequently and with fewer prerequisites than public univer-
sities, facilitating quicker access to Al and ML studies. In
contrast, public universities have higher-level introductory
courses, potentially providing a more thorough foundational
education in these fields, but with delayed student exposure.

Overall, the findings suggest that there is a range of ap-
proaches to Al curricula. Many institutions offer introductory
DS courses showing that such courses are providing students
with early exposure to Al-related content. Structuring Al and
ML courses to gradually build on the foundational knowledge
provided by early DS courses can be another strategy to
structure a progressive learning journey for students in these
fields.

VI. LIMITATIONS

Our data relies on publicly accessible course calendar infor-
mation on the institutions’ websites. However, this data may
be incomplete or contain outdated information. The dynamic
nature of course offerings in rapidly evolving fields such
as Al means that some relevant courses might have been
overlooked in their latest iteration. Prerequisite links were also
collected from the publicly accessible academic calendar, and
may not capture prerequisite and course requirements that are
not explicitly listed.

Moreover, we only considered courses offered by the com-
puting department, which may exclude courses from other
departments that also contribute to education in Al.

VII. FUTURE WORK

In future work, we plan to explore the impact of initial
course entry points on students’ subsequent engagement in Al
research. Given R1 institutions’ heavy emphasis on research,
this investigation will involve a longitudinal study that tracks
students from their exposure to Al courses to their active
participation in AI research. We will focus on analyzing
the timing of research engagement relative to coursework
and retention rates within the Al field. We are interested in
determining how early exposure to Al courses influences stu-
dents’ involvement and success in research activities, thereby
providing insights into optimizing educational pathways in Al



Further investigation is also suggested into whether certain
prerequisite structures act as barriers to entry, This exploration
could involve examining the impact of different prerequisite
configurations on student accessibility and success.

In addition, incorporating qualitative data supplement to
our current analysis through collaboration with professors and
industry professionals is another direction for future research
to make Al accessible at an earlier exposure. This collaboration
would involve a qualitative analysis such as interviews to
determine the most effective course structures for achieving
various goals, such as conducting research in specific areas.
Such insights can provide a more nuanced understanding of
how educational frameworks can be tailored to meet diverse
career and research objectives [27]], [28]].

VIII. CONCLUSION

Our study showed variations in course accessibility in
R1 institutions in the U.S. DS courses are generally more
accessible, with a third of universities offering them without
prerequisites for early engagement. In contrast, Al and ML
courses often require two to three semesters of prerequisites,
suggesting they are advanced subjects for later study. Public
universities usually have more prerequisites for these courses,
which could present barriers to entry, particularly for students
without a computing background, and potentially affect di-
versity and inclusivity in these fields. Al courses focus on
programming skills, starting with CS1, while ML courses
demand comprehensive preparation in programming and math-
ematics, indicating different foundational requirements and
study depths for these subjects.

Our analysis emphasizes the need for educational strategies
that balance foundational knowledge with accessible entry
points into Al courses. The current trends observed in R1 insti-
tutions may not allow students early exposure to key Al areas
and provide sufficient time for students to explore applications
of these areas through research. As Al technologies continue
to advance and integrate into various sectors, it is critical for
educational frameworks to be flexible and ensure accessibility
to students.

In conclusion, this study lays the groundwork for future
research and curriculum development investigating the impact
of the depth of prerequisites in creating accessible pathways in
AI courses. By addressing the identified barriers, educational
institutions focusing on students’ research engagement can
play a pivotal role in nurturing a well-prepared curriculum
that encourages students’ early research engagement in Al
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